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Brief intensive cognitive-behavioral therapy (CBT) using exposure and response prevention
significantly improves obsessive-compulsive disorder (OCD) symptoms in as little as 4 weeks.
However, it has been thought that much longer treatment was needed to produce the changes
in brain function seen in neuroimaging studies of OCD. We sought to elucidate the brain
mediation of response to brief intensive CBT for OCD and determine whether this treatment
could induce functional brain changes previously seen after longer trials of pharmacotherapy
or standard CBT. [18F]-fluorodeoxyglucose positron emission tomography brain scans were
obtained on 10 OCD patients before and after 4 weeks of intensive individual CBT. Twelve
normal controls were scanned twice, several weeks apart, without treatment. Regional glucose
metabolic changes were compared between groups. OCD symptoms, depression, anxiety and
overall functioning improved robustly with treatment. Significant changes in normalized
regional glucose metabolism were seen after brief intensive CBT (P = 0.04). Compared to
controls, OCD patients showed significant bilateral decreases in normalized thalamic
metabolism with intensive CBT but had a significant increase in right dorsal anterior cingulate
cortex activity that correlated strongly with the degree of improvement in OCD symptoms
(P = 0.02). The rapid response of OCD to intensive CBT is mediated by a distinct pattern of
changes in regional brain function. Reduction of thalamic activity may be a final common
pathway for improvement in OCD, but response to intensive CBT may require activation
of dorsal anterior cingulate cortex, a region involved in reappraisal and suppression of
negative emotions.
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Introduction

Functional brain imaging studies of patients with
obsessive-compulsive disorder (OCD) have repeatedly
found elevated cerebral glucose metabolism and
blood flow in the orbitofrontal cortex (OFC), anterior
cingulate cortex (ACC), basal ganglia and thalamus1–7

that decrease with response to treatment with ser-
otonin reuptake inhibitor (SRI) medications5,8–15 or
cognitive-behavioral therapy (CBT).9,16,17 These find-
ings and others have led to the theory that the
symptomatic expression of OCD is mediated by

hyperactivity along frontal-subcortical circuits con-
necting the OFC, caudate, globus pallidus and the
medial dorsal nucleus of the thalamus.18,19

Clinical response of OCD symptoms usually
requires up to 12 weeks of treatment with SRI
medications and standard, weekly outpatient CBT.20

The response of OCD symptoms to SRI medications is
thought to depend on the downregulation of terminal
serotonin 1db receptors and subsequent increase in
serotonin release in the OFC, which require at least 8
weeks of SRI administration.21 However, very little is
known about the brain mediation of response to CBT
in OCD. Baxter and colleagues9,16 performed positron
emission tomography (PET) scans on a total of 18
OCD patients before and after 8–12 weeks of weekly
CBT and found that the 12 patients who responded to
treatment showed significant, pre- to posttreatment
decreases in normalized right caudate glucose meta-
bolism. A study of 22 treatment-refractory OCD
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patients with Xenon-enhanced computerized tomo-
graphy before and after 7–8 months of CBT also found
significant reductions in right caudate blood flow, as
well as smaller decreases in left frontal cortex and
thalamus.17

However, it is not known if the functional changes
in OFC, basal ganglia and thalamus associated with
response to prolonged treatment in OCD can be
produced or accelerated by an intensive, short-term
treatment. If such changes could be demonstrated
after only a few weeks of treatment, it would be a
significant advance in our understanding of the
cerebral mechanisms and time course of treatment
response in OCD that could have important clinical
implications.

The effectiveness of brief, intensive, daily CBT
using exposure and response prevention (ERP) for
OCD is well established, and it is considered one of
the standard, frontline treatments for OCD.22 Inten-
sive CBT produces improvement in 60–80% of OCD
patients in as little as 4 weeks, with symptom
improvement ranging from 50–80%.23–25 We sought
to elucidate the brain mediation of response to brief
intensive CBT in OCD by measuring cerebral glucose
metabolism with PET before and after 4 weeks of
intensive CBT, and to determine whether intensive
CBT could rapidly induce the changes previously
seen after much longer trials of pharmacotherapy or
standard, weekly CBT. We hypothesized that normali-
zed glucose metabolism in OFC, caudate and thala-
mus would decrease in OCD patients who responded
to intensive CBT.

Materials and methods

Subjects
This study was approved by the UCLA Medical
Institutional Review Board. Ten adult patients with
OCD (six men, four women, mean age 40.6±12.3
years) and 12 normal controls (four men, eight
women, mean age 46.4±9.9 years) completed all
study procedures. Initially, 12 OCD patients were
enrolled, but 2 dropped out during their first week of
treatment and therefore did not receive any posttreat-
ment procedures or assessments. All subjects gave
informed consent after the procedures and possible
side effects were explained by the study physician
(SS). Diagnoses were made by a clinical diagnostic
interview and confirmed using the Structured Clini-
cal Interview for Diagnostic and Statistical Manual of
Mental Disorders, fourth edition (SCID).26 For inclu-
sion into the study, OCD patients needed to have a
pretreatment Yale-Brown Obsessive-Compulsive
Scale (Y-BOCS)27 score X16. All subjects were in
good physical health. Subjects with major medical
conditions, current or recent substance abuse, or any
other concurrent Axis I diagnosis were excluded,
except for one OCD patient who had comorbid major
depressive disorder. Six OCD patients were taking
medications, but all medication doses were un-
changed for at least 12 weeks prior to starting CBT

and were not changed during the study. Six patients
were taking SRI medications, three were also taking
adjunctive buspirone, two were on adjunctive risper-
idone and two were on adjunctive clonazepam. None
were on mood stabilizers, tricyclics or other antidepres-
sants. Of the twelve OCD patients initially enrolled,
seven had received CBT in the past, and six reported
prior response to CBT. Controls had scores <6 on all
symptom rating scales and no history of any psychiatric
disorder or substance abuse, and no current major
medical conditions or psychoactive medications.

Symptom severity was rated with the Y-BOCS,
Hamilton Depressive Rating Scale (HDRS),28

Hamilton Anxiety Scale (HAS),29 Global Assessment
Scale (GAS)30 and Clinical Global Impressions/Improve-
ment scale (CGI),31 immediately before each subject’s
pretreatment and posttreatment PET scans, by a trained
rater who was not involved in the treatment.

Treatment
All OCD patients had 90-min individual CBT ses-
sions, 5 days a week for 4 weeks, with a therapist with
expertise in CBT for OCD (EG). Treatment consisted of
ERP with homework exercises, as well as cognitive
techniques and mindful awareness. ERP involved
graded exposures to both imagined and real situations
and stimuli that typically provoked compulsive
behaviors or avoidance, accompanied by prevention
of compulsions or avoidance. In addition to their
daily ERP sessions with the therapist, patients were
assigned 4 hours of ERP homework daily, and were
instructed that it was imperative for them to follow all
instructions and homework assignments carefully, to
maximize the benefit of the treatment.

Intensive CBT was conducted for every patient
according to a set protocol and sequence.25 Sessions
no. 1–3 included a comprehensive behavioral assess-
ment, education for the patient in self-monitoring of
obsessions, compulsions and triggers, and a discus-
sion of the rationale and specific goals of CBT for each
individual. A hierarchy of feared and avoided situa-
tions and stimuli was created for each patient, using a
‘subjective units of distress’ scale. Sessions no. 4–15
consisted of in vivo and imaginal ERP sessions of
gradually increasing difficulty, as well as review of
daily homework assignments. Sessions no. 16–20
focused on relapse prevention and included continued
ERP practice, cognitive restructuring and assess-
ment of progress. Patients were also taught to
recognize internal and external cues that triggered
their OCD symptoms (mindful awareness), so that
they could anticipate their over-appraisal of fear and
anxiety when their obsessions occurred.

Response to treatment was defined a priori as a X35%
drop in Y-BOCS score and a CGI rating of ‘much
improved’ or ‘very much improved,’ the standard
response criteria used in clinical trials for OCD.32

Imaging methods
Cerebral glucose metabolism was measured with
[18F]-fluorodeoxyglucose (FDG)-PET in all subjects
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before and after 4 weeks of intensive, daily CBT.
Normal controls were scanned before and after 10–12
weeks without any treatment, to control for the effects
of habituation to the scanning procedures and
environment on brain metabolism. PET methods were
as detailed in our previous reports.6,11 In brief, each
subject received 5 mCi of FDG while in supine
position with eyes and ears open, in a dimmed room
with no specific stimuli. Subjects were closely
monitored to make sure that they remained awake,
lying still without moving or talking during the
40-min FDG-uptake period. No cognitive task was
given. PET scanning was performed on a Siemens-CTI
EXACT HR1 961 PET tomograph (CTI, Knoxville, TN,
USA), yielding 63 transverse sections spaced 3.5 mm
apart, with 3.6 mm in-plane spatial resolution, with a
15.5 cm field of view (FOV) in 3D mode. Images were
acquired at an angle parallel to the canthomeatal
plane and reconstructed using a Hann filter (cutoff
frequency 0.5 cycles per pixel) into 128� 128 pixel
images. Each subject’s head was held in a special
head holder during scanning. A plastic mask was
molded to each subject’s face to ensure that his/her
head would be in the identical position during the
first and second scans. Face masks were held in place
with velcro fastens to minimize head motion. Accu-
rate head positioning was ensured by aligning mark-
ings on the mask to a low-power neon laser beam. A
63Ge transmission scan was performed for positioning
and attenuation correction, prior to injection of
FDG. After the 40-min FDG-uptake period, dynamic
emission PET scan acquisition occurred over 30 min
and was summed (six frames, 5 minutes each).

Each subject also received a 3D magnetic resonance
imaging (MRI) scan of the brain without contrast,
performed on a Siemens Symphony or Sonata 1.5
Tesla scanner (Siemens, New York, NY, USA), using
the following protocol: (1) multiplanar whole-brain
scout; (2) axial-oblique whole-brain T2-weighted fast
spin echo sequence—0 angle slices parallel to the
canthomeatal line in parasagittal view (repetition
time (TR) = 2000–2500 ms, echo time (TE) = 90–
110 ms, FOV = 25 cm, slice thickness = 3 mm with
0 mm separation between slices, reconstructed to a
256� 192 matrix) and (3) axial-oblique whole-brain
3D spoiled-gradient recall parallel to the canthomea-
tal line (TR = 24 ms, TE = 4 ms, flip angle = 351, slice
thickness = 1.2 mm, yielding 124 slices in a 25 cm
FOV; 256�256 matrix). All MRI scans were reviewed
by a neuroradiologist (NS). One prospective subject
with MRI evidence of structural CNS lesions was
excluded from the study.

An MRI-based region-of-interest (ROI) analysis was
employed for comparisons of glucose metabolic
changes in brain regions chosen a priori, based on
previous findings in OCD. This method involved
coregistering each subject’s pre- and posttreatment
FDG-PET scans within the 3D orientation of his/her
MRI scan, using MedX software (Sensor Systems,
Arlington, VA, USA), then manually outlining gray
matter ROIs on transaxial planes of the MRI scan, as

previously described.6,11 Cerebrospinal fluid (CSF)
and white matter were excluded from the hand-drawn
outlines of all gray matter ROIs (Figure 1).

ROIs were drawn by technicians blind to subject
identity and diagnosis and were reviewed to ensure
interrater reliability. Eight bilateral ROIs were se-
lected a priori, based on previous associations with
OCD symptoms or response to treatment: dorsolateral
prefrontal cortex (DLPFC), ventrolateral prefrontal
cortex (VLPFC), OFC, dorsal anterior cingulate
cortex (dACC), ventral anterior cingulate cortex
(vACC), caudate nucleus, putamen and thalamus.
Boundaries for these regions were defined using
standard atlases.33,34 The DLPFC consisted of the
dorsal half of the middle frontal gyrus, while
the VLPFC consisted of its ventral half.35 The
OFC ROI included the medial and lateral orbital
gyri, the orbital part of the inferior frontal gyrus and
the most inferior part of frontal pole, but excluded
gyrus rectus. The ACC was divided evenly into dorsal
and ventral portions. The horizontal midplane of the
genu of the corpus callosum divided the dACC from
the vACC. The cingulate sulcus was the dorsal
boundary of the dACC; and the callosal sulcus was
the ventral boundary of the vACC. The vACC ROI
thus included subgenual cingulate cortex but not
gyrus rectus. The caudate ROI included the entire
head but excluded the body and tail of the caudate
nucleus. Both supratentorial hemispheres were also
drawn.

ROIs drawn on each subject’s MRI were transferred
to his/her coregistered, first and second PET scans.
Ratios of each ROI normalized to ipsilateral hemi-
spheric glucose metabolism (ROI/Hem) were
calculated. This technique took intersubject neuroa-
natomical variability into account and ensured that
pre- and posttreatment values for a given ROI were
measured in exactly the same neuroanatomical
volume.

Statistical methods
The data were first screened for distributional proper-
ties, outliers and missing values. No variables were
rejected by this process. Only data from subjects who
completed the study were analyzed for pre- to
posttreatment changes. Demographic variables were
compared between the two subject groups: OCD
patients (n = 10) and normal controls (n = 12). Age
was compared between the two groups with t-tests
(two-tailed) for independent samples, while the
proportion of men in each group was compared with
a Fisher’s exact test (SPSS 11.0). Symptom severity
scores (Y-BOCS, HDRS, HAS and GAS) were com-
pared between the two groups with an omnibus
repeated-measures multivariate analysis of variance
(MANOVA), using diagnostic group as the between-
subject factor, time (before vs after treatment) as the
within-subjects factor, and symptom severity scores
as the dependent variables.

ROI/Hem data were analyzed to identify significant
pre- to posttreatment changes in normalized regional
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cerebral glucose metabolism. Pre- and posttreatment
ROI/Hem values were compared between the two
groups with an omnibus repeated-measures MANO-
VA, using diagnostic group as the between-subject
factor, time (before vs after treatment) as the within-
subjects factor, and ROI/Hem values as the dependent
variables. Wilk’s l statistic for the interaction effect of
diagnostic group� time was used to determine
whether OCD patients and controls had significantly
different, pre- to posttreatment changes in normalized
regional cerebral glucose metabolism across all 16
ROIs tested. Univariate repeated-measures analyses of
variance were then performed for only those ROIs

found to have significant diagnosis� time interac-
tions in the omnibus MANOVA, to determine which
ROIs accounted for the significant difference between
groups (P < 0.05). The use of the omnibus MANOVA
reduced the likelihood of Type II error from multiple
comparisons.

Partial correlations, covarying for pretreatment
HDRS-17 score, were calculated between pre- to
posttreatment changes in Y-BOCS scores and pre- to
posttreatment changes in ROI/Hem values in the 10
OCD patients, to identify significant associations
between improvement in OCD severity and changes
in regional brain activity.
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Figure 1 Regions of interest (ROIs) drawn on magnetic resonance imaging (MRI) scans. ROIs outlining gray matter
structures were manually on transaxial planes of the MRI scan of every subject. Cerebrospinal fluid (CSF) and white matter
were excluded from the outlines of all ROIs. Bilateral ROIs were selected a priori, based on previous associations with OCD
symptoms or response to treatment. Hippocampus and amygdala ROIs were not included in the data analysis but are shown
here as neuroanatomical reference points. Both supratentorial hemispheres were also drawn. Each subject’s ROIs were
transferred to their coregistered, first and second positron emission tomography (PET) scans, for calculation of glucose
metabolic rates in their specific regional volumes. DLPFC, dorsolateral prefrontal cortex; VLPFC, ventrolateral prefrontal
cortex; ACC, anterior cingulate cortex; Put, putamen; Hipp, hippocampus.
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Results

OCD patients did not differ significantly from con-
trols in age (Student’s t = 1.2, P = 0.23) or male:female
ratio (Fisher’s exact test, P = 0.39).

Treatment response
OCD patients responded very well to intensive CBT,
with robust improvements on all outcome measures.
OCD patients had highly significant, pre- to posttreat-
ment decreases on the Y-BOCS, HDRS and HAS, and
significant increases in GAS scores, compared to
untreated controls (all P < 0.001; Table 1). Nine of the
ten OCD patients who completed treatment met
criteria for classification as responders to intensive
CBT. Normal controls did not show significant
changes on any symptom rating scale.

Changes in relative regional cerebral glucose
metabolism
Pre- to posttreatment changes in normalized cerebral
glucose metabolism differed significantly between
OCD patients and controls. A significant interaction
effect of diagnosis� time was found in the omnibus
repeated-measures MANOVA comparing changes in
all pre- to posttreatment ROI/Hem values in OCD

patients vs controls (Wilk’s l= 0.06, F16,5 = 5.0,
P = 0.04). Four regions accounted for this difference
between groups: left dACC (time�diagnosis F = 4.8,
d.f. = 1,20, P = 0.04), right dACC (F = 4.7, d.f. = 1,20,
P = 0.04), left thalamus (F = 5.3, d.f. = 1,20, P = 0.03)
and right thalamus (F = 4.5, d.f. = 1,20, P = 0.047).
Compared with controls, OCD patients showed sig-
nificant decreases in bilateral thalamus/Hem values
but had a significant increase in right dACC/Hem
(Table 2). Controls, on the other hand, showed a
significant decrease in left dACC/Hem values, com-
pared to OCD patients.

In OCD patients, there was a significant inverse
correlation between change in Y-BOCS scores and
change in right dACC/Hem values (partial r =�0.76,
d.f. = 7, P = 0.02), indicating a strong association
between improvement in OCD symptoms and in-
creasing normalized glucose metabolism in right
dACC. No other significant correlations between
symptom improvement and changes in regional brain
activity were found.

Discussion

There were two novel findings of this study. First,
significant changes in brain activity were achieved
after just 4 weeks of intensive CBT, much faster than
previously seen with SRI treatment or standard,
weekly CBT. Second, brief intensive CBT resulted in
a unique pattern of changes in normalized regional
glucose metabolism: significant increases in dACC
activity that correlated with improvement in OCD
symptoms, accompanied by significant declines in
bilateral thalamic activity. This pattern suggests that
intensive CBT shares some common sites of anti-
obsessional action with SRIs but has different effects
in the dACC. Reduction of thalamic activity may be a
final common pathway to improvement in OCD
symptoms, regardless of the treatment modality used,
but CBT may lead to this end result through very
different mechanisms and loci of action than phar-
macotherapy.

The declines in thalamic activity seen with brief
intensive CBT in this study replicated the results of
several previous functional neuroimaging studies of
OCD treatment using pharmacotherapy9,11,15 or neu-
rosurgery.36,37 Taken together, the results of these
studies suggest that reduction of thalamic activity,
and a resultant decrease in thalamocortical excita-
tion,18 may represent a final common pathway to
response to a variety of different treatments in
nondepressed OCD patients.19,38 As in many prior
studies,5,8–10,12,17,36 the magnitude of change in thala-
mic metabolism did not correlate with the degree of
response of OCD symptoms to intensive CBT. This
suggests that while decreasing thalamic activity may
be a marker of response to treatment in OCD it is not
specifically related to the extent of symptom im-
provement.

However, the increase in dACC activity seen
after brief intensive CBT was opposite to changes

Table 1 Clinical variables of study population before and
after treatment

Clinical
variable

OCD patients Normal
controls

Repeated-measures
MANOVA

(n = 10) (n = 12) (Diagnosis� time)

F (d.f. = 20) P

Y-BOCS
Pre 25.2 (±3.3) 0.4 (±1.4)
Post 11.0 (±5.1) 0.2 (±0.6) 265.9 < 0.001

HDRS-17
Pre 11.8 (±5.4) 1.3 (±1.2)
Post 6.1 (±6.5) 2.1 (±2.1) 29.6 < 0.001

HDRS-28
Pre 17.7 (±7.0) 1.6 (±1.6)
Post 8.0 (±5.9) 3.0 (±2.9) 51.7 < 0.001

HAS
Pre 13.7 (±7.0) 1.8 (±1.8)
Post 6.3 (±5.3) 2.6 (±2.4) 28.5 < 0.001

GAS
Pre 51.9 (±5.1) 86.8 (±3.9)
Post 64.5 (±7.3) 84.7 (±6.1) 70.6 < 0.001

Abbreviations: GAS, Global Assessment Scale; HAS,
Hamilton Anxiety Scale; HDRS, Hamilton Depressive
Rating Scale; MANOVA, multivariate analysis of variance;
OCD, obsessive-compulsive disorder; Y-BOCS, Yale-Brown
Obsessive-Compulsive Scale.
Mean±s.d.
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sometimes seen with pharmacotherapy of OCD. While
the majority of pre- and post treatment functional
neuroimaging studies published to date found no
changes in cingulate activity with pharmacotherapy
of OCD (see Saxena et al.39 for review), three of the
nine pre- to posttreatment PET studies5,9,12 and three
of the eight pre- to posttreatment single-photon
emission computed tomography studies14,40,41 found
significant decreases in cingulate activity in OCD
responders to SRI treatment. Thus, decreasing cingu-
late activity may sometimes be associated with
improvement in OCD symptoms but does not appear
to be a necessary mechanism of action for treatment
response. Instead, the functional changes most
strongly associated with treatment response in
OCD are decreases in activity in the right
OFC,8,10–13,36,37,42,43 right caudate9,11,12,14,16,17,36,37,42

and thalamus.9,11,15,36,37

In contrast to the effects of pharmacotherapy on
brain function, enhancement of dACC activity may be
a primary mechanism of action of CBT for OCD.
Treatment with CBT appears to enhance dACC
activation in OCD patients during certain cognitive
tasks.44,45 Moreover, a significant increase in glucose
metabolism in the dACC was seen in responders to
CBT for major depression.46 Taken together with these
prior findings, our results suggest that dACC activa-
tion might be a common mechanism of action
required for response to CBT across disorders.

The dorsal part of the ACC includes two
anatomically and functionally distinct subregions:

the perigenual ACC and the anterior middle cingulate
cortex (aMCC) (see Vogt et al.47 for nomenclature and
definitions of subregions). Our dACC ROI encom-
passed a relatively large section of cingulate cortex
that included the aMCC and the superior half of the
perigenual cingulate cortex. Different subdivisions of
the cingulate cortex clearly have different roles.47–49

The aMCC, described as limbic motor cortex that
governs response selection,47 has been shown to be
involved in conscious regulation of emotion. The
aMCC is activated by several cognitive tasks that are
required and emphasized in CBT for OCD: selective
attention to one’s own emotional responses,50,51

mindful awareness of one’s own emotional state,
reappraisal of negative stimuli,52 and suppression of
arousal53 and negative affect.54 Efferent projections
from the aMCC to the amygdala appear to modulate
amygdala activity.55 Activity in the aMCC is posi-
tively correlated with the magnitude of decrease in
negative affect when subjects reappraise their emo-
tional responses to negative photographs,52,54 and is
negatively correlated with left amygdala activity
when subjects label threatening photographs.56 Thus,
in OCD patients, an increase in aMCC activity after
intensive CBT could represent an improved ability to
reappraise and suppress negative emotional re-
sponses, perhaps by inhibiting exaggerated amygdala
responses to stimuli that previously provoked obses-
sional fears and compulsive urges.57–59

Other functions of the aMCC include monitoring
response conflict, error detection, focused attention,

Table 2 Pre- and posttreatment region/hemisphere glucose metabolic ratios

Region of interest OCD patients Normal controls

Pretreatment Posttreatment First scan Second scan

Right amygdala 0.75±0.04 0.74±0.05 0.77±0.05 0.78±0.05
Left amygdala 0.80±0.07 0.78±0.06 0.81±0.05 0.81±0.05
Right caudate 1.11±0.08 1.12±0.07 1.16±0.08 1.16±0.06
Left caudate 1.07±0.09 1.07±0.06 1.15±0.05 1.14±0.07
Right dACCa 1.03±0.08 1.05±0.08 1.07±0.05 1.06±0.06
Left dACCa 1.05±0.12 1.06±0.09 1.08±0.11 1.05±0.11
Right DLPFC 1.17±0.08 1.19±0.09 1.21±0.07 1.21±0.07
Left DLPFC 1.19±0.08 1.20±0.09 1.22±0.08 1.22±0.08
Right hippocampus 0.80±0.05 0.80±0.05 0.83±0.05 0.84±0.05
Left hippocampus 0.84±0.04 0.85±0.04 0.86±0.04 0.85±0.03
Right OFC 1.03±0.07 1.02±0.06 1.05±0.07 1.05±0.10
Left OFC 1.05±0.05 1.05±0.06 1.05±0.09 1.05±0.10
Right putamen 1.30±0.10 1.30±0.09 1.35±0.09 1.34±0.07
Left putamen 1.32±0.12 1.33±0.08 1.36±0.10 1.36±0.07
Right thalamusa 0.99±0.08 0.95±0.07 1.01±0.04 1.01±0.04
Left thalamusa 1.01±0.09 0.98±0.08 1.02±0.05 1.04±0.05
Right vACC 1.08±0.08 1.10±0.08 1.09±0.04 1.09±0.05
Left vACC 1.11±0.12 1.10±0.10 1.13±0.07 1.13±0.07
Right VLPFC 1.07±0.11 1.08±0.09 1.12±0.09 1.11±0.11
Left VLPFC 1.10±0.12 1.09±0.11 1.12±0.05 1.12±0.09

Abbreviations: dACC, dorsal anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; OCD, obsessive-compulsive
disorder; OFC, orbitofrontal cortex; vACC, ventral anterior cingulate cortex; VLPFC, ventrolateral prefrontal cortex.
aRepeated-measures MANOVA, diagnosis� time interaction, P < 0.05.
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executive control and willed motivation.55,60–62 Nakao
et al.44 found that after treatment with fluvoxamine or
CBT, OCD patients activated the right aMCC and left
posterior MCC during a Chinese version of the Stroop
task. Enhanced posttreatment aMCC activity may,
therefore, also reflect improved cognitive functioning
associated with response to OCD treatment.

One surprising result was the lack of significant
pre- to posttreatment changes in normalized caudate
or OFC metabolism in the OCD patients. This may be
because 6 of the 10 OCD patients were on medica-
tions, which likely influenced pretreatment caudate
and OFC activity and may have precluded further
major metabolic changes in these regions. Indeed,
pretreatment normalized glucose metabolism in
bilateral caudate and right OFC was somewhat lower
in the OCD group than in the controls, suggesting that
the OCD patients’ previous and ongoing medications
may have already decreased activity in these brain
regions prior to their entry into the present study.
However, no subject in this study had any change in
medications or doses for at least 12 weeks prior to
their first PET scan and initiating intensive CBT, nor
were medication changes allowed during the CBT
treatment period. Therefore, it is very unlikely that
medication effects alone could account for the
specific pre- to post-CBT changes in brain activity
seen in this study. The fact that the six medicated
OCD patients had not adequately responded to
pharmacotherapy and still had moderate to severe
OCD symptoms at study entry suggests that they
might represent a relatively medication-refractory
group that might be neurobiologically different from
more SRI-responsive OCD patients.63 However,
approximately 50% of all OCD patients have similarly
inadequate responses to SRI medications,20,64 indicat-
ing that it is more the rule than the exception. So our
sample is likely quite representative of the range of
SRI responsivity found in among OCD patients in the
‘real world.’ Nonetheless, regional brain metabolic
responses to CBT in medicated patients may well be
different than those of unmedicated patients.

Another possibility is that striatal changes may take
a longer time to manifest and may be preceded by
changes in the aMCC and thalamus in patients treated
with intensive CBT. The two previous functional
imaging studies of CBT effects on brain activity in
OCD, which both found decreased caudate activity
after CBT, were of 12 weeks’9,16 and 7–8 months’17

durations, respectively, whereas the present study
lasted only 4 weeks. Neither of those prior studies
found pre- to posttreatment changes in OFC activity,
suggesting that CBT might not significantly alter OFC
function in OCD. Our findings suggest that activation
of the aMCC occurs rapidly with intensive CBT and is
strongly correlated with treatment response after 4
weeks. Unfortunately, the Nakatani et al.17 study did
not measure cingulate activity, so it remains unknown
whether prolonged weekly CBT produces similar
effects in this region. Future studies that measure
brain activity with multiple, serial scans during and

after treatment will be required to establish the
dynamics and chronological pattern of regional brain
responses to CBT.

This study had several limitations. The sample size
was relatively small. One OCD patient in this study
had comorbid major depression, but exclusion of this
patient’s data from analysis of changes in regional
brain metabolism did not significantly change the
results. The inter-scan interval for controls was longer
than for OCD patients. However, there is no reason to
suspect that the regional cerebral metabolic changes
seen in controls would have been significantly
different if the period between their first and second
scans was shorter. The decrease in ACC metabolism
seen in controls replicated the findings of several
prior PET studies65–68 and likely reflects habituation
to the scanning environment and procedures.67

However, this study also had several strengths that
afford confidence in its findings. All OCD patients
were treated by the same CBT therapist (EG),
eliminating confounds from inter-therapist variance
in treatment. Medication changes were not allowed
for 12 weeks prior to the first PET scan, nor during the
4 weeks of intensive CBT between the first and
second PET scan. As in prior studies of intensive CBT
for OCD, a high proportion of patients in this
responded to treatment. Of 12 OCD patients initially
enrolled, only two dropped out, and nine of the ten
completers were responders to brief intensive CBT.
This response rate is quite typical for prior studies of
intensive, daily CBT for OCD.23–25 For example, Foa et
al.25 also studied OCD patients treated with intensive
ERP for 4 weeks. Their intent-to-treat and completer
response rates were 62 and 86%, respectively, similar
to our response rates.

MRI-based localization of ROIs for each subject was
used to measure regional activity in brain structures
chosen a priori, and to identify significant changes in
regional activity, rather than relying on whole-brain
voxel-based methods that may not account for
structural neuroanatomical abnormalities and varia-
bility that are present in OCD.38 Several studies have
found systematic errors in the localization of regional
cerebral metabolic abnormalities when voxel-based
methods were used, compared to individual subject
MRI-based ROI methods.69,70 Such errors are often
due to failed spatial alignment of small structures,
such as the caudate nucleus and hippocampus, which
are prone to high anatomic variability.69 Our ROI
method also partially corrected for regional atrophy,
because CSF and white matter were excluded from
the outlines of all gray matter structures, and ensured
that pre- and posttreatment values for each ROI were
measured in exactly the same neuroanatomical
volume in each subject. Symptom severity was
assessed in each subject with standardized rating
scales immediately prior to their pre- and posttreat-
ment PET scans, so that the brain activity measured
on the PET scan would reflect the current sympto-
matic state of the subject. Thus, we were able to
correlate pre- to posttreatment changes in symptom
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severity with corresponding changes in regional
cerebral glucose metabolism.

In conclusion, the findings of this study suggest
that the rapid response of OCD to brief intensive CBT
may be mediated by a distinct pattern of functional
neuroanatomical changes: decreases in thalamic
activity accompanied by an increase in dACC activity
that correlates with the degree of symptomatic
improvement. Decreasing thalamic activity may re-
present a common pathway to response of OCD
symptoms to a variety of treatment modalities, while
activation of the dACC may be a mechanism of action
required for response to CBT across mood and anxiety
disorders.
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